If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3p^2+5p=10
We move all terms to the left:
3p^2+5p-(10)=0
a = 3; b = 5; c = -10;
Δ = b2-4ac
Δ = 52-4·3·(-10)
Δ = 145
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{145}}{2*3}=\frac{-5-\sqrt{145}}{6} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{145}}{2*3}=\frac{-5+\sqrt{145}}{6} $
| 2w/4=35 | | 2(x+3)^2+18=0 | | 7=-3x+12 | | 35/20+8m/20=71/20 | | -2(x+2)=-6-4 | | 7=3x=12 | | 3(y-6)=44+y | | (2x÷3)+1=(7÷5) | | 112=7x÷7(-4x-17) | | 1/8x+4=14 | | 3.5x+8.5=26 | | 12(n/6)-12(5n/12)=2 | | 5(3-2x)=-55 | | X^2-7.5x=17 | | 6x-7=-4x | | 3x-5=10x+16 | | 64=-16t+64t+4 | | 2/5(x+1)=0 | | 64=-1664t+4t^2+ | | 2x+112=100 | | 1/2(x-3)=16 | | 12(n/6)-12(5n/12)=12(1/6 | | 3a+5=11-3a | | t=(9+5)*4 | | 15-3(2q=1) | | X/8+x/8=13/40 | | 2x+184=156 | | x+11(x-4)=-28 | | 2/3(-9y-15)=30-2y | | -7(x-4)+6=20 | | 3(3x-8)-5=3(x-3)-8 | | 2/3x-29=46 |